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(the leftovers)

Advanced topics

• Models of evolution as applied to shape
o	Brownian motion
o	Directional selection
o	Stabilizing selection (OU)

• Curved spaces and tangent spaces
o	Why is morphospace curved?
o	What is tangent space?
o	Does it matter? 

•  Morphometric transformations vs biological transformations
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Quantitative evolution of morphology

1. Most likely outcome = starting 
value

2. Variance of the outcomes = 
number of step * (rate 
parameter)2

3. Outcomes are normally 
distributed (reason is Central 
Limit Theorem:  each step 
adds a random variable, sum 
of many random variables 
forms a normal distribution)

Brownian motion of a single trait
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Brownian motion function for 2 uncorrelated traits

#################################################################
#
#   This function generates a Brownian-motion random walk
#   in two traits for n number of generations.  The default step
#   variance is 1.  Written by David Polly, 2008.
#
#################################################################

randomwalk <- function(n,r=1) { 
scores <- matrix(ncol=3, nrow=n)
scores[1,] <- c(1,0,0)
for (i in 2:n) {
scores[i,1]=i
scores[i,2]=scores[i-1,2]+rnorm(1, mean=0, sd=sqrt(r)) 
scores[i,3]=scores[i-1,3]+rnorm(1, mean=0, sd=sqrt(r)) 
}
return(as.data.frame(scores)) 
}
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Quantitative evolutionary theory

Lande, R.  1979.  Quantitative genetic analysis of multivariate evolution, applied to 
brain: body size allometry.  Evolution, 33: 402-416. 

Gz β=Δ

Change in phenotype

Selection coefficients

Additive genetic variance – 
covariance matrix

Selection coefficients can be:
Random
Directional
Stabilizing
Etc.
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Brownian motion on landmarks does not take 
into account biological covariance

Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. 
Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm 

http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
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To more realistically model evolution: 
1. Estimate the additive genetic covariance matrix of traits for a 

single species

a. Normally this is estimated from parent-offspring data

b. Phenotypic covariance matrix (for a single species) can arguably be 
substituted

c. Don’t use covariance matrix based on multiple species because this 
confounds phenotypic covariances and phylogenetic covariances

2. Use this covariance matrix to construct a morphospace. Its PCs 
are the axes of genetic variation.

3. Estimate step rates from a phylogeny 

4. Simulate evolution using desired model on the PC axes (which are 
independent) based on step rate

5. Reconstruct shapes using scores, eigenvectors, and consensus 
shape
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Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. 
Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm 

Wright, 1932 (original concept for allele frequency and reproductive fitness)
Simpson 1944 (phenotypic concept for macro evolution)
Lande, 1976 (quantitative theory for phenotypes)

Adaptive landscape

http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
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analogous to evolution on a flat adaptive 
landscape where random bumps appear and 
disappear 

Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. 
Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm 

Shape model in 
landmark space

PC scores in 
shape space

Procrustes distance from 
ancestral (consensus) shape

Brownian motion

rnorm(1, mean=0, sd=sqrt(r))

http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
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analogous to a flat adaptive landscape that is 
tilted up in one direction

Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. 
Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm 

Shape model in 
landmark space

PC scores in 
shape space

Procrustes distance from 
ancestral (consensus) shape

Directional selection

rnorm(1, mean=-1, sd=sqrt(r))

http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
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Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. 
Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm 

analogous to classic adaptive peak

Shape model in 
landmark space

PC scores in 
shape space

Procrustes distance from 
ancestral (consensus) shape

rnorm(1, mean=-1*score, sd=sqrt(r))

Stabilizing selection

http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
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Perfectly flat landscape where change occurs 
by chance sampling from one generation to the 
next.  Change is small and a function of 
population size

Polly, P. D. 2004. On the simulation of the evolution of morphological shape: multivariate shape under selection and drift. 
Palaeontologia Electronica, 7.2.7A: 28pp, 2.3MB. http://palaeo-electronica.org/2004_2/evo/issue2_04.htm 

Shape model in 
landmark space

PC scores in 
shape space

Procrustes distance from 
ancestral (consensus) shape

rnorm(1, mean=0, sd=sqrt(var(trait)/N))

Genetic drift (type of BM)

http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
http://palaeo-electronica.org/2004_2/evo/issue2_04.htm
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Some technicalities about shape space
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Dimensions of shape space
Dimensions.– because size, rotation and translation have been removed from the data, the 
dimensions of morphospace are fewer than simply the number of landmark coordinates.  

	 For 2D:  

Dimensions = 2K – 4

where K is the number of landmarks, and four dimensions 
are lost due to size (-1), translation (-2), and rotation (-1)

	 For 3D: 

Dimensions = 3K – 7

where K is the number of landmarks and seven dimensions are 
lost due to size (-1), translation (-3), and rotation (-3)

For both: 

Dimensions = N-1

if N-1 < above dimensions, where N is the sample size
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Number of dimensions
Morphospace is defined by the 
number of landmarks and their 
dimensionality.  All shapes with the 
same number of landmarks fit 
somewhere in that morphospace, 
regardless of how different they are.

Important observation:  Most 
biological shapes are similar to one 
another compared to random shapes 
with the same number of landmarks.  
Thus, the biological shapes cluster in 
a small region of shape space.
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Morphospace is curved
Shape space is not Euclidean 
because of the dimensions lost to 
translation, scaling, and rotation

Shape space belongs to class of 
spaces called Reimannian 
manifolds, the two dimensional 
version of which is a sphere

u1

u2

R

Morphospace for triangles

(what is the dimensionality 
of this space?)
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Tangent space
Tangent space is a projection of curved shape space onto a plane (or 
into an uncurved Euclidean space), much like a map projection is the 
projection of a curved surface onto a flat paper.

Geometric analysis normally takes place on a tangent plane because 
most statistical methods.

D = Orthogonal projection of B onto Tangent Space.  
C = Stereographic projection onto Tangent Space
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Triangle shape space projected onto a plane

u1

u2

Like with a globe, distortion is greater toward the edges
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Distortion introduced by  projection
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An experiment to prove that shape space is curved
Take the simple example of triangles.  Three 2D landmarks.  The 
dimensionality of the shape space is 2  (2K = 6.  2K – 4 =2).  

One can imagine this by considering that the alignment of triangles 
could be made by lining up one side (two point) exactly, which leaves 
only the apex to move in two dimensions...
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Random triangles
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>	tris=array(runif(5*6,0,1),dim=c(3,2,5))
>	plot(c(0,1),c(0,1),	xlab=“X”,	ylab=“Y”,	type=“n”)
>	for(i	in	1:5)	polygon(tris[,,i],col=ceiling(runif(1,1,657)))

>	resultTri	<-	procGPA(tris)
>	plot(c(-1,1),c(-1,1),xlab="X",ylab="Y",type="n")
>	for(i	in	1:5)	polygon(resultTri$rotated[,,i],col="Grey”)

Random	triangles	are	as	different	as	any	three-landmark	shape	can	possibly	be,	
thus	they	span	the	enUre	range	of	three-landmark	(2D)	shape.		

5 random triangles The same triangles superimposed
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PCA of 5 random triangles
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Random triangles

>	tris=array(runif(5*6,0,1),dim=c(3,2,5))
>	plot(c(0,1),c(0,1),	xlab=“X”,	ylab=“Y”,	type=“n”)
>	for(i	in	1:5)	polygon(tris[,,i],col=ceiling(runif(1,1,657)))

>	resultTri	<-	procGPA(tris)
>	plot(c(-1,1),c(-1,1),xlab="X",ylab="Y",type="n")
>	for(i	in	1:5)	polygon(resultTri$rotated[,,i],col="Grey”)

Random	triangles	are	as	different	as	any	three-landmark	shape	can	possibly	be,	
thus	they	span	the	enUre	range	of	three-landmark	(2D)	shape.		

1,000 random triangles The same triangles superimposed
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PCA of 1,000 random triangles
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PCA of random triangles plotted with three dimensions
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Minimizing the problem

u1

u2

R

Shape space should be centered at the mean of your sample so that 
objects receive least distortion possible

PCA accomplishes this by subtracting the mean from the Procrustes 
coordinates before calculating axes

Usually distortion is negligible for biological shapes because 
constraints make them comparatively like one another 



Earth and Atmospheric Sciences | Indiana University
(c) 2018, P. David Polly

Verifying whether your data have a problem
The distortion caused by curvature of shape space can be tested by 
comparing Reimmanian distance 

Ta
ng

en
t s

pa
ce

 d
is

ta
nc

e

‘Real’ distance on the surface of curved shape space

Regression through the origin for 
distance in tangent
space, Y, regressed onto Procrustes 
distance (in radians), X

Slope:        0.964798
Correlation (uncentered):  0.999962
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Is shape space “evolutionary”?
reconstruction of ancestors and evolutionary trajectories
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1. it cannot model the gain or loss of 
features

2. it assumes that trait covariances don’t 
change

3. it assumes that evolutionary transitions 
are continuous

Limitations of shape space

assumes a 1-to-1 linear 
mapping between 
morphospace and 
underlying phenotypic/
genetic/developmental 
processes

Paths minimize Procrustes distances, 
but are they the most probable 
biological transformations?
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When methods and theory collide
Key question in evolutionary morphology: continuity or discontinuity?

(1) Evolutionary novelties

Discontinuous 
variation in the 
human aortic arches

(2) The nature of evolutionary transformations
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A simple example....

Polly P.D.  2017.  Morphometrics and evolution: the challenge of crossing rugged phenotypic landscapes with straight 
paths. Vavilovskii Zhurnal Genetiki I Selektsii (=Vavilov Journal of Genetics and Breeding), 21: 452-461.
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The map between morphospace and factors undergoing 
selection and drift may be non-linear and discontinuous
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An example with Raup’s shell coiling

Raup, D. 1966.   Geometric analysis of shell coiling: general problems.  Journal of Paleontology, 40: 1178-1190.
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Six simulated shells 
and their Raupian (”genetic”) parameters
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Shells in morphospace with ancestor reconstructions
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Shells in parameter space with ancestor 
reconstructions
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The two do not match...
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The problem:  non-linear mappings and 
discontinuous transitions...

1. “Homology free” geometric 
methods that can accommodate 
gain and loss of features

2. Non-linear shape spaces that can 
be used to model interactions of 
genetic, developmental, and 
environmental effect

Homologous
landmarks

“Homology free”
outline

semilandmarks

“Homology free”
surface

semilandmarks

Polly, 2008

Solutions?
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Which path 
would 
Darwin 
take?
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faces<-readShapes('facelands')
face.landmarks<-faces$landmarks.pixel

rotated.faces<-array(dim=c(9,2,36))
face.proc<-gpagen(face.landmarks)

for(i in 1:36){
rotated.faces[,,i]<-face.proc$coords[,,i]%*%matrix(c(cos(-pi/2),-sin(-pi/2),sin(-pi/
2),cos(-pi/2)),nrow=2,ncol=2)
}

facedf<-plotTangentSpace(rotated.faces)
face.consensus<-apply(rotated.faces,c(1,2), mean)

Fix the rotation on your faces
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Turn your shape modelling code into a function 

make.my.model <- function(score,PC,consensus,evectors) {
modelscore<-c(0,0,0,0,0,0,0,0,0,0,0,0,0,0)
modelscore[PC]<-score
my.model <- matrix(modelscore%*%t(evectors),ncol=2,nrow=9,byrow=T)+consensus
return(my.model)

}

make.my.model(0.05,1,consensus,eigenvectors)

for(i in seq(from=-0.1, to=0.1, by=0.05)) {
plotRefToTarget(face.consensus,make.my.model(i,1,face.consensus,facedf$rotation))

}
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Brownian motion function

randomwalk <- function(n,r=.01) { 
  scores <- matrix(ncol=1, nrow=n)
  scores[1] <- 0
  for (i in 2:n) {
    scores[i]=scores[i-1]+rnorm(1, mean=0, sd=sqrt(r)) 
  }
  return(scores) 
}

randomwalk(20)
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Put the two together to simulate Brownian 
motion on one PC

my.randwalk<-randomwalk(30,r=0.005)

for(i in 1:length(my.randwalk)) {
plotRefToTarget(face.consensus,make.my.model(my.randwalk[i],
2,face.consensus,facedf$rotation))

}


